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1. Introduction

Since Music III, the first language for digital audio synthesis, developed by
Max Mathews in 1959 at Bell Labs, to Max [1], and from MUSICOMP, con-
sidered one of the very first music composition languages, developed by Lejaren
Hiller and Robert Baker in 1963, to OpenMusic [2] and Elody [3], research in
music programming languages has been very active and innovative. With the con-
vergence of digital arts, such languages, and in particular visual programming
languages like Max, have gained an even larger audience, well outside the com-
puter music research community.

Within this context, the Faust language [4] introduces a dual programming
paradigm, based on a highly abstract, purely functional approach to signal pro-
cessing while offering a high level of performance. Faust semantics is based on a
clean and sound framework that enables mathematical correction proofs of Faust
applications to be performed, while being complementary to current audio lan-
guages by providing a viable alternative to C/C++ for the development of efficient
signal processing libraries, audio plug-ins or standalone applications.

The definition of the Faust programming language uses a two-tiered approach:
(1) a core language provides constructs to manage signal transformations and (2)
a macro language is used on top of this kernel to build and manipulate signal
processing patterns. The macro language has rather straightforward syntax and
semantics, since it is a syntactic variant of the untyped lambda-calculus with a
call-by-name semantics (see [5]). On the other hand, core Faust is more unusual,
since, in accordance with its musical application domain, it is based on the notion
of “signal processors” (see below).

The original definition of Faust provided in [6] is based on monorate signal
processors; this is a serious limitation when specifying spectral-based sound ma-
nipulation algorithms (such as FFT) or extending the language applicability out-
side the music domain, for instance for image analysis and manipulation (such as
data compression). We propose here a multirate extension of Faust based on a key
innovative principle: data rate changes are intertwined with vector data structure
manipulation operations, i.e., creating an output signal where samples are vectors
divides the rate of input signals by the vector size, while serializing vectors mul-
tiplies rates accordingly. We also introduce new, dual constructs to build record-
like signals; contrarily to vector operations, record signals do not induce signal
rate modifications. Since Faust current definition does not offer first-class struc-
tured data, this proposal kills two birds with one stone by adding both multirate
processing and data structures; this interplay between vectors, records and rates is

www.manaraa.com



made possible in the typing semantics of Faust by the introduction of dependent
types.

The contributions of this paper are as follows: (1) the specification of a new
extension of Faust for vector processing, record data manipulation and multirate
applications, (2) a static typing semantics of Faust, based on dependent types, (3)
a denotational semantics of Faust (the one presented in [6] is operational) and
(4) Subject Reduction and Rate Correctness theorems that validate the multirate
synchronous nature of this vector extension.

After this introduction, Section 2 provides a brief informal overview of Faust
basic operations. Section 3 is a proposal for a multirate extension of this core,
which we illustrate with a simple vector application implementing a Haar-like
subsampling operation. Section 4 defines the static domains used to define Faust
static typing semantics (Section 5). Section 6 defines the semantic domains and
rules used in the Faust dynamic denotational semantics, which is shown to be
compatible with the static semantics in Section 7. Proving that this structuring
and multirate extension of Faust indeed behaves properly, i.e., that signals of dif-
ferent rates merge gracefully in a multirate program, is the subject of the Rate
Correctness theorem in Section 8. The last section concludes.

2. Overview of Faust

A Faust program does not describe a sound or a group of sounds, but a kind
of signal processor, something that gets input signals, itself a function from time
ticks ¢ to values, and produces output signals. The program source is organized,
basically, as a set of definitions mapping identifiers to expressions; the keyword
identifier process is the equivalent of main in C. Running a Faust program
amounts to plugging the I/O signals implicity used by process to the actual
sound environment, such as a microphone or an audio system for instance, usually
via software audio card managers such as Jack'.

To begin with, here are two very simple Faust examples. The first one pro-
duces silence, i.e., a signal providing an infinite supply of Os:

process = 0;

Note that 0 is an unusual signal processor, since it takes an empty set of input
signals and generates a signal of constant values, namely the integer 0. The second

"http://www. jackaudio.org.
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simple example illustrates the conversion of a two-channel stereo input signal into
a one-channel mono output signal using the + primitive that adds its two input
signals together to yield a single, summed signal:

process = +;

Faust primitives are assembled via a set of high-level composition operations
on signal processors, generalizations of the mathematical function composition
operator o and defined via a block-diagram algebra [7]. For instance, connecting
the output of + to the input of abs in order to compute the absolute value of the
summed output signal can be specified using the sequential composition operator

13 2

:” (colon):
process = + : abs;

Here is an example of parallel composition (think of a stereo cable) using the
operator ““, ” that puts in parallel its left and right expressions. This example uses
the __ (underscore) primitive that denotes the identity function on signals (akin to

a simple audio cable for a sound engineer):
process = _,_;

These operators can be arbitrarily combined, modulo typing constraints we
present below. For example, to multiply a mono, input signal by 0.5, one can
write:

process = _,0.5 : x;

Taking advantage of some syntactic sugar the details of which are not addressed
here, the above example can be rewritten, using what functional programmmers
know as curryfication:

process = % (0.5);

e~

The recursive composition operator can be used to create processors with
delayed cycles. Here is the example of an integrator:

process = + 7
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where the “~” operator connects here in a feedback loop the output of + to the
input of “_”, via an implicit connection to the mem signal processor which imple-
ments a 1-sample delay, and the output of “_" is then used as one of the inputs

of +. As a whole, process thus takes a single input signal s and computes an
output signal s’ such that* s'(t) = s(t) + s'(t — 1), thus performing a numerical
integration operation.

To illustrate the use of this recursive operator and also provide a more mean-
ingful audio example, the following 3-line Faust program defines a pseudo-noise
generator:

random = +(12345) 7 %(1103515245);

noise random, 2147483647.0 : /;

volumeUI = vslider ("noise[style:knob]", 0,0,100,0.1);
process = (noise,volumeUI : «),100 : /;

The definition of random specifies a (pseudo) random number generator that
produces a signal s such that s(¢) = 12345 + 1103515245 * s(t — 1). Indeed, the
expression + (12345) denotes the operation of adding 12345 to a signal, and
similarly for » (1103515245) . These two operations are recursively composed
using the ~ operator, which connects in a feedback loop the output of + (12345)
to the inputof » (1103515245) (via an implicit 1-sample delay) and the output
of x (1103515245) to the single input of + (12345).

The definition of noise transforms the random signal into a noise signal by
scaling it between -1.0 and +1.0, while the definition of process adds a simple
user interface to control sound production; the noise signal is multiplied by the
value delivered by a slider to control its volume. The whole process expression
thus does not take any input signal but outputs a signal of pseudo random numbers
(see the block diagram representation of this process in Figure 1, where the
little square near the addition block denotes a 1-sample delay operator).

The last two composition operators in the definition of core Faust, <: and :>,
perform fan-out and fan-in transformations, as we illustrate in the next section

3. Multirate Extension

Traditional synchronous languages such as Esterel, Lustre, Signal or State
Charts [8] are built upon the concept of clocks and time stamps upon which com-
putation steps are, one way or another, scheduled; the presence (or absence) of

25'(—1) is set to 0 by Faust.
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2.14748e+09

Figure 1: Noise generator process block diagram

clock ticks are generally used to activate (or stop) processing. The use of differ-
ent clocks allows program parts to be activated at different rates. Clocks can be
seen as objects of interest either at the programmer’s level (e.g., in Lucid Syn-
chrone [9]), at the static semantics level ([10], [11]) or at the mathematical level
([12]).

Faust, as described in [6], is a monorate language; in monorate languages,
there is just one time domain involved when accessing successive signal values.
However, digital signal processing traditionally relies heavily upon subsampling
and oversampling operations, which naturally lead to the introduction of multirate
concepts. Since Faust targets the domain of highly efficient, multimedia (mostly
audio) DSP processing, we suggest to use simpler, multiple rates to deal with such
issues [13], instead of one of the more general clock designs reviewed above. We
informally describe below this approach, and illustrates it with a simple example
of its use.

3.1. Rates for vector processing

We propose to see clocking issues as an add-on to the Faust static semantics
(Faust is a strongly typed language). Rates (or frequencies) f are elements of the
Rate = Q domain. Signals, which are traditionnally typed according to the type
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of their codomain, will now be characterized by a pair, called a rated type, formed
by a type and a rate: Type* = Type x Rate.

The first key idea is to posit that multiple rates in an application are introduced
via vectors. Vectors are created using the new vectorize primitive; informally,
it collects n consecutive samples (the constant value n is provided by the signal
that is the second argument to this primitive) from an input signal of rate f and
outputs vectors with n elements at rate f/n; if the input values are of type 7, then
output vector samples have type vector,(7). The dual serialize primitive
maps a signal of vectors of type vector,(7) at rate f to the signal of rate f x n
of their linearized elements, of type 7. The primitive [ ] provides, using as inputs
a signal of vectors and one of integer indexes, an output signal of successively
indexed vector elements. Finally, the primitive® # builds a signal of concatenated
vectors from its two vector signal inputs.

The second key feature of this multirate extension is, as we just saw, that
the size n of vectors is encoded into vector types; moreover this size is provided
via the value of a signal, argument of the vectorize primitive. This calls for
a dependent-type [14] static semantics that embeds values within types. Since
Faust strives for high run-time performance, this type system must furthermore
be sophisticated enough to be able to ensure, at compile time, that a given signal
is constant (when it is to be used as a signal denoting the size of a vector): we
introduce intervals of values in the static semantics to deal with such an issue.
Basic rate values are, in practice, provided by the sampling rate of the audio card
manager to which a process signal processor is eventually linked.

We show below that this interplay between types, vector sizes and rates leads
to the addtition of rate constraints to the more traditional typing constraints of
Faust static semantics.

3.2. Records and Vectors Rating Duality

Most traditional programming languages offer, at their most fundamental level,
at least two kinds of data structuring concepts: vectors and records. There are nat-
ural dualities between these notions:

1. Vectors are indexed-based collections of elements, while records are symbol-
based (via field names);

2. Vector elements are ordered, while record fields generally are not (some
languages such as C support some notion of field ordering in their subtyping

3The notation { is, of course, not related to the one used for the domain of rated types.

7
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relationship);

3. Vector sizes are generally dynamic values, while the number of fields in
records is a compile-time constant (again, some languages also allow some
leeway here, in subtyping or inheritance relationships).

Note that our Faust extension does not enforce this last duality property since,
for efficiency reasons, we decided to make vector sizes compile-time constants.
However, the presence of rates into the static semantics of our Faust extension
suggests to add to these existing duality relationships a new duality relation (rating
duality) between vectors and records:

4. Vector (signal) constructs are rate modifiers, while record (signals) are not.

In our proposal, a record constructor signal such as [foo,bar, baz> accepts,
as inputs, a collection of signals, here three, that operate at the same rate and
outputs a single signal, still with the same rate, each of its samples being a labelled
collection of input samples. Accessing elements of a record signal is symbol-
based: <bar, foo] takes as input a signal of records and outputs two signals of
the corresponding elements.

Before describing formally our framework in the remainder of this paper, we
illustrate it with an example.

3.3. Haar Filtering, an Example

To get a better intuitive understanding of how data structuring constructs in-
teract with Faust primitives, we present a Haar-like downsampling process, which
is a simplified step in the Discrete Wavelet Transform shown to be of use, for
instance, in some audio feature extraction algorithms [15]. The signal processor
process takes an input signal s at rate f and produces two output signals at rate
f/2, the mean o; and difference oo, such that o1(t) = (s(2t) + s(2¢t + 1))/2 and
09(t) = 01(t) — s(2t + 1). It could be defined in our extended Faust as follows:

down = vectorize(2) : [](1);
mean = _<: _,mem :> /(2);
diff = _ <: <mid],<second] : —;
process =
_ <: (mean:down),down : [mid,second> <: <mid],diff;

Here, down gathers the data from its input signal in pairs stored in vectors of size
2 (hence the size 2 used in the curried version of vectorize) from which the
second element is extracted, again using a signal processor, here [ ], curried over
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its second argument 1 (vector indices start at 0). This function downsamples its
input signal of rate f into an output signal of rate f/2, picking one value over two
from the input.

The definition of mean indicates that its input signal s (denoted by _) is du-
plicated, using the <: fan-out operator. Two copies are expected since the output
of <: is fed into a parallel composition of two one-input signals: the first copy is
simply passed along by _, while the second one is being delayed via mem by one
sample. Both signals s(t) and its delayed copy s(t — 1) are then merged, using
the fan-in operator :>, which adds the mixed signals to s(t) + s(t — 1); this sum
signal is then divided by 2 using a curried division operation to yield an average
signal m(t) = (s(t) + s(t — 1)) /2.

The signal processor process duplicates its single input s (as before, _)
to a two-input parallel process: the first copy is averaged using mean and then
downsampled using sequencing with down, yielding signal ms; the second copy
is simply downsampled, yielding so. These two parallel data signals are fed into
the two-input signal processor [mid, second>, which outputs a single signal
of record-like structures with two fields, named mid and second. This record
signal is fanned-out into the parallel two-input signal processor (<mid],diff):
(1) <mid] takes a signal of records, keeping only the component named mid
and thus retrieving signal ms and (2) diff fans out its input signal of records
to a parallel process that destructures each of them before substraction, yielding
msy — So. The end result is the expected pair of signals (01, 02) = (M2, Mgy — S2)
of downsampled means and differences.

4. Static Domains

The multirate extension of Faust static semantics relies heavily on dependent
typing, which is formally defined below.

4.1. Dependent Types

Since the values embedded in signals are typed, the static typing semantics of
extended Faust uses basic types b in Base, which is a defined set of predefined

types:
b€ Base = int|float.

Since our type system uses dependent types, we need a way to abstract values to
yield a decidable framework. We introduce spans a in Span, which are pairs of
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signed integers n (or m); spans represent the intervals of values that expressions
may have at run time:

n,meZ = {—w,fwlUZ,
a € Span = ZY X 7~

where we assume the usual extensions of arithmetic operations on Z to Z“; we
take care in the following to avoid introducing meaningless expressions such as
—w + +w. Note that we use integer spans here for both integer and floating-point
values for simplicity purposes; extending our framework to deal with floating-
point spans is straightforward. A span a = (n,m) is written [n, m] in the sequel.

All base-typed expressions are typed with an element b of Base, together with
a span [n, m| that specifies an over-approximation of the set of values these ex-
pressions might denote. Vectors, as groups of n values, are typed using their size
(the number n) and the type of their elements. Records are typed according to their
list of field names and the type of the corresponding element in the data record.
Finally, since signed integers are part of types, via spans, we need to perform
some operations over these values, and thus introduce the notion of type addition.
The type domain Type of types 7 is then:

T € Type = Base x Span |
N x Type |
Record |
Type x Type,,

u € Record = U Ide™ x Type™ .

n>0

As a shorthand, we note :
e bla| for base types b with span a;
e vector,(7) for vector types of n elements of type T;

e (L,T) for records, where L is a list of field names and T a list of correspond-
ing types;

e and 7 + 7’ for the type resulting from performing the addition operation on
two types 7 and 7.

10
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Not all combinations of these type-building expressions make sense. We for-
mally define below the notion of a well-formed type:

Definition 1 (Well-Formed Type wff (7)).
A type T is well-formed, noted wff (1), iff:

e when T = b[n,m|, thenn < m, =(n =m = —w) and =(n = m = +w);
e when T = vector, (1), then wff (1) and n > 0;

o when 7 = (L, T), then wff (7') for all 7 in T and, for all i # j in [1,|L
one has L; # L;;

5

o when 7 = 7'+ 7", then wff (7') and wff (7).

4.2. Rated Types

Since vectors are used to introduce multirate signal processing into Faust, we
need to deal with these rate issues in the static semantics. As hinted above, we use
rates f in Rate to manage rates:

f €Rate = QF.

In our framework, the only signal processing operations that impact rates are re-
lated to over- and sub-sampling conversions. To represent such conversions, we
use multiplication and division arithmetic operations, thus defining Rate as the
set of positive rational numbers.

The static semantics of signals manipulated in our extended Faust thus not
only deals with value types, but also with rates. We link these two concepts in the
notion of rated types 7% in Type':

" € Type! = Type x Rate |
Type* x Typet .

We note 7/ the rated type (7, f) and 7¢ + 7'* the addition of two rated types of
same rate.

11
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4.3. Impedances

A Faust signal processor maps beams of signals, i.e., sets of signals, to beams
of signals. These beams have a type (we only represent the type of the image
of a signal, since the domain is always time, and signals can only embed values
of a single type) called an impedance z in Z. Type checking a Faust expression
amounts to verifying the compatibility of the input and output impedances of its
composed subexpressions:

z€l = UTypeﬂn.

n>0

The null impedance, in Type’jo, is (), and is used when no signal is present.
A simple impedance is ('), and is the type of a beam containing one signal that
maps time to values of type ¢ at rate f. The impedance length |z| is defined such
that z € TypeW'. The i-th rated type in z (1 < i < |z]) is noted z[i]. Two
impedances z; and z, can be concatenated as z = z; || 22, to yield an impedance in

TypeﬁdﬁdQ where d; = |z;|, defined as follows:
z[i] = il (1<i<d),

To build more complex impedances, we introduce the || ¢ iterator as follows:

Hn/’dM _ { (), ifn > n/,

M(n) || HZ:&M otherwise .

where M is any function that maps integers to impedances. Intuitively, HZ/’dM is
the concatenation of M (n), M(n + d), M(n + 2d),...M(n’); when d = 1, it can
be omitted. As a shorthand, z[n, n', d], which selects from z the types from the
n-th type to the n/-th one by step of d , is ||”?)i.(z[i]), while a simple slice of z
is z[n,n'] = z[n,n’, 1]. Applying a function M to all elements of an impedance z
is noted ||, M, which is a shorthand for ||‘1Z| (M (z]i])).

Finally, to simplify our notations, we assume in the following that all the above
introduced shorthands can also be used with any term, such as L or T, member of
an iterated product domain.

Definition 2 (Well-Formed Impedance wff (z)).

An impedance z is well-formed, noted wff (), iff, for all i € [1,|z|], there exist
a rate f;, noted #(z[i]), and a type 7; such that z[i) = 77i, with wff (7;) and
fi € Rate.

12
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Definition 3 (Isochronous Impedance iso(z)). An impedance z is isochronous,
noted iso(z), iff there exists a rate f, noted §(z), such that, for all i € [1, |z|], one

has §(2[i]) = f.

4.4. Schemes

Some Faust processors, such as the identity processor __ or the delay processor
mem, are polymorphic. The static definitions of Faust primitives must thus be type
schemes that abstract their input and output impedances over abstractable sorts S,
in Sort. Type schemes £ in Scheme are defined as follows:

S € Sort = {Base, N, Type, Rate, Type*} ,
k € Scheme = (Var x Sort)* xZ x Z.

We note* Az : S...2’ : §'.(z, 2') the scheme (((z, 5), ..., (2, 5")), 2, 2’), where
x are abstracting variables in Var. These schemes may be instantiated where
needed; the substitution (z, z’)[l’/l] of a list [ of variables by elements in !’ in a
pair (z, 2’) is defined as usual.

The static definitions of Faust primitives are gathered in type environments 7’
that map Faust identifiers to schemes.

5. Static Semantics

The static semantics specifies, by induction on Faust syntax, how impedance
pairs are assigned to signal processor expressions. We first define some utilitary
operations on static domains, and then provide static rules for Faust.

5.1. Syntax

Faust syntax uses identifiers I from the set Ide and expressions E in Exp.
Numerical constants, be they integers or floating point numbers, are seen as pre-
defined identifiers. The syntax of core Faust is defined in Table 1.

In our core definition of Faust, every expression represents a signal processor,
1.e., a function that maps signals, which are functions from time to values, to other
signals.

“Keeping with a long tradition, we choose the usual “:” sign to denote typing relations, even
though it is also used to represent the sequence operation in Faust. The reader should have no
problem distinguishing both uses.

13
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E == I|

L> | <L]|
E1:E2|E17E2|
E; <:Ey|E; :>Eq
E; ~Ey

L €ldes ::= UI”
n>0

Table 1: Faust Syntax

5.2. Impedance Matching

Complex Faust expressions are constructed by connecting together simpler
processor expressions. In the case of fan-in (respectively fan-out) expressions,
such connections require that the involved signal processors match in some spe-
cific sense: Faust uses the impedance matching relation z; > 2z, (resp. <) to
ensure such compatibility conditions. Such a relation goes beyond simple type
equality by authorizing a larger (resp. smaller) output z] to fit into a smaller
(resp. larger) input z,, using the following definitions (> requires mixing of sig-
nals, while < simply dispatches the unmodified signals) in which d] = |z]| and
d2 = |22’Z

2y =29 = djdy #0and
mod(dy, dz) = 0 and
Y Al tidy, (i+1)do] = 2,
i€[0,d} /d2—1]
2y <29 = djdy #0and
mod(dy, d}) = 0 and

I124N.2) = 2,

where equality on impedances is defined by structural induction and “mod” de-
notes the arithmetic modulo operation.

Since we deal in our framework with dependent types (values, via spans, ap-
pear in the static domains), performing the mixing of signals, as above, require the

14
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ability to perform, in the static semantics, additions over impedances and, conse-
quently, over types; for instance, mixing a signal of type int|0, 2] with one of type
int[3, 6] yields a signal of type int[3, 8]. To formalize such operations, we assume
the existence of static semantics addition rules such as:

(+)
[n,m|+ [0/, m'] = [n+n ,m+m] |
)
o) = fsm] = = m—n] |
)
[n,m]/[n/,m] = [~w,+w]  (if [0,0] C [/, m]),
(V+)
vector, (1) + vector,(7') = vector,(r +17') ,
(t+)
T+7 = 7
4 7 L
(z+)
2| = |2'] = [2"]
Vi € [1, |z]]).2[i] + 2'[i] = 2"[i]
247 = 2

5.3. Subtyping

The presence of values in types logically induces a reflexive, antisymmetric
order relationship 7 C 7’ on types, rated types and impedances, defined by the
rules such as:

(i2f)
int[n,m| C float[n,m] ,
(b)
[n,m] C [0, m]
bn,m] C bn',m'] ’
(r)
L' C L

VI’ e L. TL7H(T)] < T[LHT1)]
(L,T) c (L, 71T)

15
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where we introduce’ the notation L=!(I) = 7 when L[i] = I. To these rules, we
add traditional structural rules on vectors, records and impedances; subtyping is
only defined on rated types that have the same rate.

Note thatif - C 7 and 7 C 7, then 7 = 7.

5.4. Type Environments

We assume that there is an initial type environment 7 that provides the typing
definitions for the predefined signal processors. For instance, one has:

CONCOIR
(), 0),

) = A% Type'.(

) = A7 Type' (
) = Af:Rate.(() (int[0,01Y))

To(-2.8) = Af:Rate.((), (float[-3, —2]7)),
) = A7 :Typer :Type.f: Rate.((Tf, N, (7 + T’f)) ,
) = A7 Typet.((79), (7%)) .

As a consequence of the implicit mixing introduced by the impedance match-
ing relation > used in fan-in operations, signal processors for numerical operators
such as + must be able to deal with any type; they are thus associated to polymor-
phic type schemes in the type environment. Their arguments must also have the
same rate, a constraint enforced by the use of the same ¢* in these type schemes.

Introducing the vector extension in the static semantics simply amounts to
adding, beside the empty vector { }, of type A f : Rate.7 : Type.((), (vectoro(7)’)),
four bindings in the initial environment 7{:

e Ty(vectorize) =
Af : Rate.f’ : Rate.7 : Type.n : N.((7/, int[n, n]?"), (vector, (7)//™));

[ ] To(#) =
Af : Rate.r : Type.m : Non : N.
((vectorm(T)f, VeCtOTn(T)f), (Vectorm+n(7)f));

o To([1) =
Af : Rate.r : Type.n : N.((vector, (7)7,int[0,n — 1)7), (77));

>Note that L' is here well defined since we assume from the start that there are no duplicates
in field names.

16
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e Ty(serialize) = Af: Rate.7 : Type.n : N.((vector,(7)7), (r7<m)).

The dependent type system is key here. In the primitive vectorize, we are
able to specify that the vector size has to be constant, since its type uses a span
restricted to be one-valued, [, n]; note that the rate f” of this signal is also irrele-
vant, and can be of any value. When concatenating vectors with the # processor,
the resulting vector size m + n sums the sizes of the input vectors. We are also
able to ensure that no out-of-bound accesses can occur in Faust, since the index
signal argument fed to the [] signal processor is constrained, at compile time, to
be between 0 and the vector size, since its span is [0, — 1]. Finally, notice how
size information impacts signal rates; this is key to prove the theorem of Section 8.

5.5. Typing Rules

Faust is strongly and statically typed. Every expression, a signal processor, is
typed by its I/O impedances:

Definition 4 (Expression Type Correctness 7' - E).
An expression E is type correct in an environment 'T', noted T' - E, if there exist
impedances z and z' such that T + E : (z,2") with wff (z) and wff ().

The static semantics inference rules are defined in Table 2; some are rather
straightforward. Rule (i) ensures that identifiers are typable in the type environ-
ment 7'; type schemes can be instantiated to adapt themselves to a given typing
context of Identifier I. The typical rule (C) allows types to be extended according
to the order relationship induced by spans in types, records and basic types. In
Rule (:), signal processors are plugged in sequence, which requires that the output
impedance of E; is the same as E;’s input. In Rule (,), running two signal proces-
sors in parallel requires that their input and output impedances are concatenated.
In Rules (<:) and (:>), the < and > constraints are used to ensure that a proper
matching of the output of E; to the input of E; is possible.

In Rules ([>) and (<]), we deal with records. First, we specify how the [>
construct builds a single signal u of records with the proper field names L from an
isochronous beam of signals of the same length. With (<]), we perform the dual
operation, generating a beam of isochronous signals from a (subset L’ of field
names in a) single signal u of records.

The most involved rule deals with loops (~). Here, the input impedance z, of
the feedback expression E; is constrained to be the first |23 types of the output
impedance z'. Also, the first |z5| elements of the input impedance of the main
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expression E; must be the same as the ouput impedance of the feedback expression
Eo; these looped-back signals will not thus impact the global input impedance
z1[|25| 4+ 1, |21]]. To simplify the dynamic semantics (see Table 3), all looped-back
signals are required to have the same rate. We do not expect this constraint to
be a problem in practice since all operations have eventually to be performed in
such a manner; any rate mismatch at the “~” level can be fixed by moving there
the down/up sampling conversions that would have to be present anyhow in E,.
Finally, note that the output impedance Z' is here an approximation of z’. This is
introduced not for semantic reasons, but to make type checking decidable while
ensuring that the dependent return type is valid independantly of the unknown
bounds of the iteration space:

Definition 5 (Impedance Widening Z).
The widened impedance of Impedance z, noted Z, is such that |zZ| = |z| and

Vi € [1,|2[].2d] = 2[i], with:

—

e vector, (7)/ = vector, (7)/;

—

o (L.T) = (L, ||[TAT.T);

e bla]/ = bla)’;

e [n,m| =[—w,+uw|

Basically, all knowledge on value bounds is lost under widening.

6. Dynamic Semantics

Since Faust sees parallelism as an implementation issue (Faust expressions
can be trivially evaluated in parallel, since no side-effets can be performed in the
core language), the denotational semantics for core Faust is based on standard
notions and does not introduce parallel-specific concepts such as powerdomains,
while remaining synchronous.

6.1. Domains

A Faust expression denotes a signal processor; as such its semantics manipu-
lates signals, which assign various values to time ticks. The dynamic semantics,
in particular, uses integers n, k, d, ¢ (in N) and times ¢ in Time = N.
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Signals map times to values v in Val :

veVal = N+ R+ (N— Val) + (Ide — Val) |
N = N4+{L}+{?},
R = R+{L}+{7}.

Since evaluation processes may be non-terminating, we posit that sets such
as Val are complete partial orders (cpos), with order relation  and bottom _L.
Since all functional cpos are here strict, we define, for f € A — B, its domain
dom(f) = {a/f(a) #L}; the size of this domain |dom/(f)|, called the support f
of f,is a member of N 4+ {w}, where w is used to deal with infinite cpos. B

The value ’?’ denotes error values (useful to denote non-existing values such
as 1/0), and thus, for any Operator o and Value v different from L, we assume
o(?,v) = 7. The functional cpo N — Val is used for vector denotations, while
Ide — Val is used for records.

A signal s, which is intuitively a “history” denoted by a function, is a member
of Signal = Time — Val. We define the domain dom/(s) and support s of a signal
s as above.

Signal is a cpo ordered by:

sC s = dom(s) C dom(s") and
Vi e [0,s—1], s(t) =5'(t) .
We gather signals into beams m = (my, ..., m,,) in Beam:
m € Beam = U Signal™ .
n>0

We consider that all notations introduced to manipulate impedances can similarly
be applied to beams. Note that we do not need to consider Beam as a cpo, although
each Signal” is, with the order:

mCm' = Viéel[l,n], m[icm|],
1L = (At L,..,\t. 1) € Signal”.

A signal processor p in Proc is the basic constituent of Faust programs: p €
Proc = Beam — Beam. We define dim(p) = (n,n’) such that p € Signal” —
Signal™ .

The standard semantics of a Faust expression is a function of the semantics of
its free identifiers; we collect these in a state , a member of State = Ide — Proc.
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6.2. Denotational Rules

We assume given an initial state ry, which binds Faust predefined identifiers
to their value such that, for instance:

s)-(s) ,
5)-()

L) = X
() (

ro(0) = A().(AL.0),
(+) (
(/) (
(

I
>

= A(s1,82).(Mtsp(t) + s2(t))

= A(s1,82).

At.

s51(t)/s2(t) if t < min(sy, s2) and so(t) # 0,
7if t < min(sy, s2),

1 otherwise) ,

ro(mem) = A(sq).(delay(sy, At.1)) .

These definitions assume that T = 0 : ¢/ for all types ¢ and rates f, since this is
needed for the definition of delayed signals in “~” loops to make sense. Similarly
+ is supposed to be defined for all types since it is used in the dynamic definition

of :> (see below). We assume the existence of the delay function defined as:
delay (s, s2) = AMt. L if so(t) =L, s1(t — s2(t)) if t — s9(t) > 0,0 otherwise ,

which delays each sample of Signal s; by a number of time slots given, at each
time ¢, by s5(t); the usual one-slot delay used in the semantics of “~” loops is
thus delay(sy, At.1), as is the semantics of mem.

As in the static semantics, introducing the vector extension in the dynamic
semantics® simply amounts to adding, beside the value \().(\t.()) for {}, four
straightforward bindings in the initial state:

e ro(vectorize) =
A(s1,82).(At.(s1(nt), ..., s1(n — 1 4+ nt)), where n = s9(0));

o 7o(#) = A(s1,52).(At.s1(t)|s2(2));
e 7o([1) = A(s1,52)-(At.s1(t)[s52(t)]);

®We consider that all notations introduced to manipulate impedances can similarly be applied
to vectors.
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e ro(serialize) =

A(s).(At. L, if n=|s(0)] =0, s([t/n])[mod(t,n)] otherwise).
To be able to properly define the semantic function £
E € Exp — State — Beam — Beam ,

one needs to ensure that we operate with states that are type-correct.

Definition 6 (State Type Correctness 7' - 7).
A state 1 is type correct in an environment T', noted T' = r, if, for all T in dom(r),
one has'T'+ 1.

The semantics E[E]r of an expression E in a type-correct state r is a function
that maps an input beam m to an output beam m’ (see Table 3).

The semantics of an identifier is available in the state r. The semantics of “:”
is the usual composition of the subexpressions’ semantics. The semantics of a
parallel composition is a function that takes a beam of size d; + ds and feeds the
first d; signals into p; and the subsequent d5 into p,; the outputs are concatenated.
The fan-out construct repeatedly concatenates the outputs of p; to feed into the
(larger) dy inputs of py. The fan-in construct performs a kind of opposite oper-
ation; all mod(i, dy)-th output values of p; are summed together to construct the
t-th input value of p,. The management of records is rather straightforward. Note
though that, when building records with [>, one needs to enforce that all incom-
ing signals have a defined value at time ¢ to build a proper, strict record. The loop
expression has the most complex semantics. Its feedback behavior is represented
by a fix point construct; the output of p is fed to p;, after being concatenated to
m, to yield m’; the input of p, is the one-slot delayed appropriate part of 7/, made
of signals the static semantics ensures are isochronous.

6.3. Properties
An interesting corollary of Faust denotational semantics is that one can easily

TR

prove that the *“:” constructor is actually not necessary:

Theorem 1 (: as Syntactic Sugar). Assume T' - E; : Ey : (2,2'). Then T
E| <tEy: (z,2)and T F E; :> Ey : (2,2'). Moreover, E[E; : Eo] = E[E; <:
EQ]] = E[[El > EQ]]
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Also, as can be seen in the denotational semantics of Faust, only total functions
can be expressed in the language; there is no general, potentially-infinite looping
mechanism in this framework. This is, of course, not an oversight, but a conscient
design decision that enables programs to be implemented in a more efficient way,
while not being too strong a limitation, given the audio application domain we
target. We introduce below a formal definition for such a totality property.

Definition 7 (Defined Beam def(m)). A beam m is defined, noted def(m), iff there
exist no i in [1, |m|] such that m[i] =L.

Theorem 2 (Totality). If def(m), then def( E[E]rm).

Proof. By induction on the structure of E. The ~ construct can be handled by
noticing that (delay(s, At.1)) is always defined, even if (s) is not. [J
7. Subject Reduction Theorem

One needs to ensure the consistency of both static and dynamic semantics
along the evaluation process; this amounts to showing that the types of values,
signals and beams are preserved.

Definition 8 (Value Type Correctness v : 7). A value v is type correct, noted v :

T, iff:
e whenv € N, then 7 = int[n, m] andn < v < m;
e whenv € R, then 7 = float[n,m] and n < v < m;

e whenv € N — Val, then T = vector,(7'), dom(v) = [0,n — 1] and, for all
i€0,n—1],v@): 7

e when v € Ide — Val, then 7 = (L,T),dom(v) = L and, for all T €
L,v(I): T[L7H(T)].

Definition 9 (Signal Type Correctness s : 7/). A signal s is type correct w.r.t. a
type 4, noted s : 77, if, for all u € dom(s), one has s(u) : .

Definition 10 (Beam Type Correctness m : z). A beam m is type correct w.rt.
an impedance z, noted m : z, if |m| = |z| and, for all i € [1,|m|], one has
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For the evaluation process to preserve consistency, the environment 7" and state
r, which provide the static and semantic values of predefined identifiers, must
provide consistent definitions for their domains. We use the following definition
to ensure this constraint:

Definition 11 (State Type Consistency - 7', r). An environment T' and a state r
are consistent, noted &= T, r, if, for all T in dom(r), for all z,z', m, one has: if
THTI:(z,2)andm: z, thenr(I)(m): 2" and dim(r(I)) = (|z],|2'|).

We are now equiped to state our first typing theorem. The Subject Reduction
theorem basically states that, given a Faust expression E, if the environment 7" and
state r are consistent and E maps beams of impedance z to beams of impedance
2/, then, given a beam m that is type correct w.r.t. 2, then the semantics p(m) of E
will yield a beam m' of impedance 2’

Theorem 3 (Subject Reduction). For all E, T, z, 2, r and m, if

=T, r,
m: z and
THE:(2,7),

then p(m) : 2’ and dim(p) = (|z|, |7’|), where p = E[E]r.

Proof. By induction on the structure of E.

e E=1I.Use E[I]r =r(I) and State Type Consistency.

e E=E; :E,. TFE: (z,7)implies, using Rule (:), there exists z] such that
THE;:(z,2))and T+ Ey : (27, 2").

By induction on Eq, p1(m) : 2] and dim(p1) = (|z], |21])-
By induction on E,, one gets pa(p1(m)) : 2’ and dim(ps) = (|21], |2'])-
The definition of E[E] yields E[E]rm : 2’ and

dim(p) = (Iml, [p2(p1(m))|) = (|z[,]2"]) -

e E=E E). TFE: (z72)implies, using Rule (,), there exist zy, 29, 27, 2}
such that z = z;||z9, 2" = 2}||25, T+ Ey : (21,2]) and T = Es : (29, 25).
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By Beam Type Correctness on m : z, one gets |m| = |z| and, for all ¢ in
[1,|m|], m[i] € Time — z[d].

By definition of z, |2| = |2z1| + |22|. Using the first |2;| elements of z,
one gets m[l,|z || : z1. By induction on E;, one gets p;(m[1, |z1]]) : 2}
and dim(p1) = (]z1], |#}|). Since, in the definition of E, d; = |z|, thus
p1(ml[l,dy]) : 2.

Using the subsequent |z | elements of z, one gets m[dy+1, dy+|22]] : z2. By
induction on Eo, E[Ex]r(m[di+1, d1+|22]|]) : 25 and dim(p2) = (|22], |25])-
Since dy = |25, then E[Ex]r(m[dy + 1,d; + da]) : 25.

The definition of F on E yields p(m) = py(m[1, d1])||p2(m[di+1, dy +ds)).
By definition of Beam Type Correctness, p(m) : z}||z5 = 2’ and dim(p) =

(Iml, [2']) = (I=], [2']).

E =E; <:Ey. TFE: (z,2) implies, using Rule (<:), there exist 2/, 22, k
such that T+ E; : (z,27), T F Eg : (22,2'), |22| = k|Z]| and, for all 7 in
[0,k = 1], z2[1 +i|21], |21] + iz ] = 21

By induction on E;, one gets p;(m) : z; and dim(p;) = (|z],|24]). By
induction on Es, dim(py) = (|22],|2’|). By definition of E, d; = |z]| and
d2 = ‘22 ;thUS d2 = kd’l

Let m' = || Nipi(m) = pi(m)]|....|p1(m) € Signal*®. By definition
of Beam Type Correctness and k, one gets m' : zo. By induction on E,, one
gets pa(m) : 2/ and dim(py) = (], |2/)-

By definition of E on E, then p(m) : 2" and dim(p) = (|z],|2|).
E =E; :> E). THE: (z,2') implies, using Rule (:>), there exist 2, 22, k

such that T+ E; : (z,27), T F Eg : (22,2'), |2]| = k|z2| and, for all i in
0,k — 1], 21[1 4 @] 22|, | 22| + i|22]] = 2.

By induction on E;, one gets p;(m) : 2; and dim(p;) = (|z],|24]). By
induction on E,, dim(py) = (|22}, |2’|). By definition of E, d; = |z1| and
dg = |22|, thus dll = k?dg

For all 7 in [1, do], let m® = py(m)[i, d}, d]. Thus:
i dida . .
m' = [ A (pr(m)[])
1922 \5.(2,[5]), by induction on E;

= (DI + da]...I(2,[i + (k — 1)ds)), by definition of .
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Thus, by definition of mix and the application of + on impedances, one
gets:

mix(m') (Z 21+ 1dy))
le[0,k—1]

= (z2[7]), since 2] > 23 .

Let my = |2 XNi.miz(m?). Then my : (23[1], ..., 22]ds]) = 2.
By induction on Ey, then p(m) = pa(my) : 2’ and dim(p) = (|z|, |/])-
E=[L> Tk [L>: (2 2) implies iso(z), |z| = |L| and there exists u =

(L, ||l-type) such that 2’ = (u**)). By definition of the dynamic semantics,
one has p(m) = (¢') with

s=xt'e (] dom(mli]).AT" € Lam[L™(I)](t) .

i€[1,lm|]

Thus, one sees dim(p) = (|m|, 1) = (]z],|2'|), since, by hypothesis, m : z.

To prove p(m) : 2/, one needs to show that, for all ¢’ in dom(s’), one has
s'(t') : u. Thus, since v = §'(t') = A\I'.m[L~Y(I")](¢'), when I’ € L, and
L otherwise, one needs to show, by Value Type Correctness, that there exist
L, and T, such that

U= (Ly, Ty) A dom(v) =L, A VI, € L,v(I,): Tu[L, *(1.)] -

Choosing L, = L and T, = ||.type, the first two propositions are satisfied.
To prove p(m) = 2/, one is left to show, given the definition of v and Value
Type Correctness, that for all I, in L:

mlL™H(T))(t) = [ltype [L7H(Tu)] -

Since, by definition of L™!, one has L™!(I,) = 4, if and only if L[i,] =
I., we see, collecting quantifiers, that proving p(m) : z’ is equivalent to
showing that:

Vit' € dom(s').Vi, € [1,|L|].m[i.](t) : type(z[id))

is true. Yet, by hypothesis, m : z, and thus Vi € [1, |z|] and V¢t € dom(m]i]),
ml[i|(t) : type(z[i]) is true, and implies what is needed. Indeed, first,
|L| and, second, since dom(s’) = ;¢ |, dom(mli]), the proposition with
the two universal quantifiers exchanged is also true.

z| =
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o E =<L'|. T F<L'] : (2,2') implies that there exist L, T, f and u such that
u=(L,T), 2 = || AT".T[L7'(I')}/, L’ C L and z = (u/). By definition of
the dynamic semantics, one has p(m) = m’ with

m' = A(s). [ AT Ms(1)(T)

where m = (s).
Thus, one sees dim(p) = (1, |L']) = (|z|, |2’|), by definition of z and 2’.

To prove p(m) : z/, one needs to show that
[ AT Ats(8)(T') « || AT TLH(T)]

which yields, by definition of Value Type Correctness, that for all I € L/,
one has:
M.s(t)(T) : T[L™HT)] .

Thus, one needs to show that, for all ¢t € dom(s) and I € L’, one has
s(t)(I) : T[L7Y(I)]. Yet, by definition of the m : z hypothesis, i.e., (s) :
(u'), one knows that V¢ € dom(s).s(t) : u. By Value Type Correctness on
records, one gets that VI € L.s(¢)(I) : T[L™'(I)], which implies what is
needed to prove p(m) : 2/, since L’ C L.

e E=E ~E.TFE: (z ;’) implies, using Rule (~), there exist z1, 29, S5

suchthat T+ Eq : (21, 2)), T F Eg : (29, 25), 20 = 2'[1, |22]], 25 = z1[1, |25]]
and z = z1[|2}| + 1, |z1]]. One sees that z; = 2} ||z.
Let m' = fiz(F), with ' = Am/.p;(p2(Q(m/[1,ds]))|jm). We are going
to prove fiz(F) : 2’ and dim(Am.fiz(F)) = (|z|,|7'|). Using fix point
induction (which is valid since we stay in the cpo Signal'zll), this needs to
be proven for the bottom element and, assuming this is true for m/, show it
is true for F'(m/).

— Let 1’ be bottom in Signal®'! : 1'= (M. L, At. L) : 2. One
immediately gets dim(Am. L") = (|m], |2']) = (|z], ['])-

— Assume m’ : z’. We need to show that F'(m’) : 2’ and dim(Am.F(m’)) =
(21, [2'])- One has F(m') = p1(p2(Q(m/[1, do])) [[m).
Using the lemma (left to the reader) that, if m’ : 2/, then Q(m/) : 2/,
we get that Q(m/[1, dy]) : 2».
By induction on Ey, F'(m') = py(m”||m), where m” : 2.
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Since m : z, then, by induction on E;, one has F(m') : 2’ and
dim(Am.F(m')) = (Im], [2']) = (|z[. [z']).

— By fix point induction then, m’ : 2’. Since one easily sees that 2’ C 2,
then, using Rule (C) and dim(Am.m’) = (|z|, |2’|) = (|z|, |#’|), one
gets the required result. [J

The Subject Reduction theorem can be readily applied to typing Faust expres-
sions in the initial environment 7 and state 7y, since one can easily prove the
following theorem:

Theorem 4 (Initial State Type Consistency).

I_ T(),Tg .

8. Rate Correctness Theorem

In the presence of signals that use different rates at run time, the consistency
of their rate assignment must be ensured. In particular, we show below that the
support of signals and, more generally, beams can be bounded in a way consistent
with their relative rates; this is the Rate Correctness theorem.

8.1. Beam Boudness Definition

Even though Faust expressions only denote total signal processors, the seman-
tics of “~” loops is defined as a fixed point, which is based on partially defined
signals. This leads us to the notion of beam boundness.

Definition 12 (Beam Bound ;.(m, 2)).
The bound i(m, z) of a beam m of impedance z is minep o) |mli]/8(z[i])],
where, for all n € N, we have n/0 = w.

Informally, when j(m, z) = ¢, then there is at least one signal i* in m that has
at most (c+ 1)%(z[z*]) — 1 elements in its domain of definition’. This is interesting
since the supports of signals in a beam m tell us something about how many
values can be computed if we use m as input of a signal processor. Thus cf(z[i*])
is an upper bound on the number of elements that can be used in a synchronous

"When signals are properly synchronized, e.g., in an actual computation, all m[i]/#(z[i]) are
equal, and the comments in this section about ¢* apply in fact to all signals.
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computation (all subsequent values are L), thus yielding some clues about the size
of buffers needed to perform it.

Another way to look at c-boundness comes from c itself; being the inverse of a
rate, its unit is the second, and thus c is a time. The definition of beam boundness
yields an upper bound on the number of time ticks required to exhaust at least
one of the signals of m, thus providing a (logical) time limit on computations that
would use these as actual inputs. Even though this limit, as stated here, holds for
a complete computation, it also applies when one deals with slices of the compu-
tation process, for instance when considering buffered versions of a program.

We illustrate this notion of beam boundness in Figure 2, where incoming sig-
nals s; have different rates. The suport of s; is 5, while s,’s support is 3. Note
that at most 4 elements are available in the ouput signal s/, since s; would need
one additional element for the computation of two additional elements in s to be
valid.

Of course, in general, explicit delaying operations introduced via the 1-sample
delay mem primitive may occur in Faust programs. Since these operations cumu-
latively extend the support of signals, we need to provide an upper-bound estimate
of such an extension, as a count of the additional elements introduced by a given
signal processor E; the number of such elements is, of course, related to the rate
of each given mem use. We define then @ (E) as follows:

Qr(E) = > [1/8(=)1 -

{z/mem:(z,z) €ids(T\E)}

Here, ids(T,E) denotes the list of Faust identifier typings I : (2;, z!) obtained®
via the application of Rule (i) during the typing derivation 7' + E : (z,Z'). To
get a correct upper-bound, @7 (E) simply sums the impact of each mem operation,
which is a safe albeit not very tight upper-bound. Note that Q7 (E) is a syntactic
notion, defined by induction on E and is independant of the size of input signals.

8.2. Theorem

The Rate Correctness theorem states that, given a Faust expression E, if the
environment 7" and state r are consistent and E maps beams of impedance z to
beams of impedance 2/, then, given a beam m that is type correct w.r.t. z and is

8We leave to the reader the exact specification of this function, which extends Faust static
semantics with simple bookkeeping operations, e.g., via rules such as ' + I : ((z,2/),{I :

(z,2")}.
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#z[1]) =2
. [TTTT] HTID=2 -
! E O[LLT1 | .
m:z | #(z[2)=1 | (s"):z
Lo [TT] |

Figure 2: A beam bound example, with m = (s1, s2) and pu(m, z) = 2

bounded, then the semantics p(m) of E will yield a similarly bounded beam m' of
impedance z'.

Theorem 5 (Rate Correctness).
ForallE, T, z, 2, c,r,m and m/, if

=T, r,
m:z,

THE: (2,7,

then |2'| = 0 VvV p(m',2") < u(m,z) + Qp(E), where m' = p(m) : 2’ and
p = E[E]r.

Basically, this theorem tells us that the running time of E is always upper-
bounded, whichever way we try to assess it via any of its observable facets (namely
input or output data), modulo the presence of explicit delays: u(m, z) is consistent
and thus a characteristics of E. This shows that the synchronous nature of Faust
beams is preserved by evaluation.

Proof. By induction on the structure of E.

e E=1.Use E[I]r =r(I) and then:

— trivial for _;
— for constants (thus with z = ()), since the minimum of the empty set is
w, then p(m, z) = w. The property pu(m’, 2’) < w is always satisfied;

— for !, since |2’| = 0, then the theorem is trivially satisfied;

— for mem, one has p(m/, 2") = minep, . |m'[4]/8(2'[i])]. Since 2" =

z| = 1 and m/[1] = m[l] + 1 by definition of mem, one gets

<,

L' [1/8('D)] = [(m[U+1)/8(z[1))] < [m[1]/8(z[]) ]+ [1/8(=[1])].

Thus, u(m’, 2') < p(m, z) + Qp(I), as required,;
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— for synchronous operations such as + or [], this is obvious since
B(z[i]) = #(=[¢']).

— for vectorizing and serializing operations, the relationship on rates is,
by design, the exact inverse of the one on the size of the domains, thus
yielding in fact the stronger relation p(m/, z') = u(m, z).

e E=E; :E,. TFE: (z,7) implies, using Rule (:), there exists z| such that
THE;:(z,27)and T+ Ey : (27, 2').
By induction on E{, we get m) = p1(m) : 2} and |21| =0 VvV u(m),2) <
p(m, z) + Qp(E;).
If |2]| = 0, the proof for E; follows the lines of the one we used above for
constants.

Otherwise, by induction on E;, one gets m' = po(m}) : 2’ and |2/| =
0V u(m/,z") < u(my,z)) + Qp(Es). Since Qp(E) = Qp(E;) + Qp(Eg),
one gets u(m’, 2") < u(m}, 24) + Qp(Es) < p(m, z) + Qp(E;) + Qrp(Ey),
we get the required result.

e E=E E). TFE: (2 72)implies, using Rule (,), there exist z1, 23, 27, 2}
such that z = z;||z9, 2" = 2}||25, T+ Ey : (21,2]) and T+ Es : (29, 25).
Since m = my|lme, with my = m|[l,|z|] and similarly for m,, we can
assume, without loss of generality, that the minimum of the |ml[é]/§(z[i])]
in m occurs in m;: thus pu(mq, z1) = p(m, 2).

By induction on E;, one gets m} = pi(my) : 2} and |2}| =0 V pu(m], z]) <
p(m, z) + Qp(E;).

Let ¢, be such that p(ma, 29) = ¢, with ¢y > p(m, z) and mg = m||z] +
1,]21| + |22]]. By induction on Ey, one gets mf, = pa(ms) : 2} and |2}| =
0V p(my, 25) < o + Qp(Ey).

Since m’ = m/||m}, then |2'| = |z1| + |25|. So, either |2’| = 0 or

p(m’, 2) = min(u(my, 21), p(ms, 2)) -
One gets u(m/, 2') < u(m, z) + Qp(E;) < pu(m, z) + Qp(E), as required.

TR

e E = E; <: E;. The proof is similar to the one for “:”. Indeed, “<:” dis-
patches its input signals to its output signals, and then composes them, us-
ing “:”. Since the dispatch operation does not modify the stream supports,

TR L)

this operation is, for rate correctness purposes, identical to “:”.
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e E =E; :> E,. Same as above, except that the dispatched signals are merged
using the + function. Since we know that + is synchronous, mixing does
not modify the rate behavior.

e [L > and <L]. Record building and accessing are synchronous operations,
as can be seen by looking at the rate of z and 2’

e E=E ~E.TFE: (z zA’) implies, using Rule (~), there exist z1, 29, S
such that 7'+ Ey : (21, 2"), T Eg : (29, 25), 20 = 2'[1, |22]], 25 = z1[1, |25]]
and z = z[|z5| + 1, |21/]. One sees that z; = 25]|2.

Letm’ = fix(F), with F' = Am/.p1(p2(Q(m/[1, d3]))||m). We prove below
that P(m) = (]| =0 vV p(m/,2") < ¢+ Qr(E)), with ¢ = u(m, 2), is
true.

Using fix point induction (which is valid since we stay in the cpo Signallzl|),
P(m’) needs to be proven for the bottom element | and, assuming that P
is true for m/, show it is true for F'(m/).

— If |2’| = 0, in both steps, P is obviously true.

— For the basis case of L, P is obvious too, since pu(L,2") =0 < ¢+
Qr(E), for all c.

— Assume p(m’, 2’') < ¢+ @Qp(E). We need to show that u(F(m’), 2’) <
¢+ Qp(E), with F'(m') = p1(p2(Q(m/'[1, dy)))||m).
Since m/[1, ds] is part of m/, then pu(m’[1, ds], z2) = ¢ with ¢y > c.
By definition of the delaying semantics of @, which extends signal
supports, then one has p(Q(m/[1, ds]), 29) = caz for some cas > cs.
By induction on Ey, we get that F'(m/) = py(m”||m) with u(m”, 25) <
caz + Qr(Ey) and m” = py(Q(m/'[1, dy))).
By concatenation of beams and impedances, one gets pu(m”||m, z1) =
win(gu(m”, 23), f(m, =)
By induction on E;, one has p(F'(m'), 2/) < min(u(m”, 25), u(m, 2))+
Qr(Ey) < p(m, z) + Qp(E;), as required, since Q7 (E;) < Qp(E).

— By fix point induction then, p(fiz(F),z") < ¢+ Qp(E).

Since ﬁ(ﬁ) — 4(¢*) for any rated type ¢!, then pu(m’,2") = p(m,z) < ¢+
Qr(E), as required. OJ
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9. Conclusion

We provide the typing semantics, denotational semantics and correctness the-
orems for a new multirate extension of Faust, a functional programming language
dedicated to musical, audio and more generally multimedia applications. We pro-
pose to link the introduction of record and vector datatypes in a synchronous set-
ting to the presence of multiple signal rates. We describe a dedicated framework
based on a new polymorphic dependent-type static semantics in which both vec-
tor sizes and rates are values, and prove a synchrony consistency theorem relating
values and rates. This proposal is under implementation in the Faust compiler.
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!
(1) = AL(z2) LRGeS
G) V(z,8) €l . l'(x)esS (R zl
. N7/ 1
T B I:(z2)/] T F £ (a7
T + E1 . (21721) T + E1 . (21,21)
) T F Ey:(24,2h) () T b Ey:(29,2h)
T F E1 . E2 : (Zl,Zé) T El,EQ : (21”22,21“,25)
T F Ep:(z,2) T F Ei:(z,2)
. T + E2 . (ZQ,Z;) . T + E2 . (Zg,Zé)
(<) 2 <z >) 2= 2
T + E; <:Ej: (21,2’5) T + E;:>E;: (Zl,Zé)
2 =1 w = @)
iso(z) L” C L
> < _
) = (@ ltype) <D o = Ty
T F [L>:(z (u)) T F <U]:((u)),?)
T F E1 . (Zl,Zl)
T + Ey : (29, 25)
~) 29 = 2'[1, | z2]]
z = =l |z
iso(zg)

T FE ~Ey (a2 + Llall,2)

Table 2: Faust Static Semantics
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E[I]r = r(I)
E[E| :Er = peop
E[Ey,Eo]r = Am.pi(m[l, di])l[p2(m[dy + 1, dy + dy])
E[E1 <:Eo]r = Am.pa([[1,45,0,\i-p1(m))
E[E; :> Eg]r = Am.pa(||1.a,Ni-mix(py(m)[i, dy, da]))
where mix((s)) = (s) and mix((s)||m) = E[+]r((s)||mix(m))
E[L>]r = Am.(\t € ﬂ dom(mli]).AI € L.m[L™'(1)](¢))
i€[L,[m/]
E[<Lr = Xs). |l AT At.s(t)(T')
E[E; ~ E]r = Am.fiz(Am'.pi(p2(Q(m/[1,dy]))||m))
where Q(m) = ||,,As.delay (s, At.1)

Table 3: Faust Denotational Semantics: we note p; = E[E;]r and (d;,d}) = dim(p;). We note
“Ax € A.f(x)” the function “Az. f(z) if z € A, L otherwise”
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